References

Bolz, L. H., Boyd, M. E., Mauer, F. A. \& Peiser, H. S. (1959). Acta Cryst. 12, 247-248.

Brookeman, J. R., McEnnan, M. M. \& Scott, T. A. (1971). Phys. Rev. B4, 3661-3676.

Brookeman, J. R. \& Scott, T. A. (1972). Acta Cryst. B28, 983-984.
English, C. A. \& Venables, J. A. (1971). Proceedings of the 25th Anniversary Meeting of the Electron Microscopy and Analysis Group, pp. 48-49. To be published (1973). London: Institute of Physics.
Gannon, D. J. \& Morrison, J. A. (1973). Canad. J. Phys. 51, 1590-1592.
Goodings, D. A. \& Henkelman, M. (1971). Canad. J. Phys. 49, 2902-2910.

Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W. \& Whelan, M. J. (1965). Electron Microscopy of Thin Crystals, pp. 201-202. London: Butterworths.
Hörl, E. M. \& Marton, L. (1961). Acta Cryst. 14, 11-19.
Jordan, T. H., Smith, H. W., Streib, W. E. \& Lipscomb, W. N. (1964). J. Chem. Phys. 41, 756-759.
la Placa, S. J. \& Hamilton, W. C. (1972). Acta Cryst. B28, 984-985.
Ruhemann, M. (1932). Z. Phys. 76, 368-375.
Schuch, A. F. \& Mills, R. L. (1970). J. Chem. Phys. 52, 6000-6008.
Steeds, J. W., Tatlock, G. J. \& Hampson, J. (1973). Nature, Lond. 241, 435-439.
Vegard, L. (1929). Z. Phys. 58, 497-501.
Venables, J. A. (1970). Phil. Mag. 21, 147-166.
Watchel, E. J. (1972). J. Chem. Phys. 57, 5620-5621.

Acta Cryst. (1974). B30, 935

Crystal Structures of Pentacoordinate Phosphorus Compounds. II.* 2-Fluoro-2,2'-spirobis-(1,3,2-benzodioxaphosphole), $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2} \mathrm{PF}$

By Hartmut Wunderlich \dagger and Dietrich Mootz \dagger
Max-Planck-Institut für Festkörperforschung, 7 Stuttgart 1, Postfach 1099, Germany (BRD)

(Received 19 November 1973; accepted 21 November 1973)

Abstract

The title compound is orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$, with $a=11.338$ (5), $b=14.725$ (5), $c=$ 6.750 (3) $\AA ; Z=4$. The intensities were measured on an automatic off-line four-circle diffractometer. The structure was solved by Patterson and Fourier techniques and refined by full-matrix least-squares calculations to $R=0 \cdot 04$. The geometry of the pentacoordinate phosphorus atom is considerably distorted from the idealized trigonal bipyramid and may be regarded as intermediate between this and a square pyramid. The axial angle $\mathrm{O}-\mathrm{P}-\mathrm{O}$ is $168 \cdot 2^{\circ}$, the equatorial angles are $107 \cdot 3,106 \cdot 6$, and $146 \cdot 1^{\circ}$. The P-O bond lengths are 1.659 and $1.658 \AA$ (axial) and 1.628 and $1.625 \AA$ (equatorial). Each catechol residue is connected to one axial and one equatorial oxygen atom, thus leaving an equatorial position for the fluorine atom.

The stereochemistry of pentacoordinate phosphorus is usually associated with the geometry of a trigonal bipyramid [see for example Ugi \& Ramirez (1972)]. This model has been established for free molecules with five equal and independent ligands at the phosphorus atom, e.g. PF_{5} (Hansen \& Bartell, 1965). Packing forces, unequal ligands and steric interaction of some of the ligands as a consequence of chelation can be expected to cause deviations from the idealized $D_{3 h}(\overline{6} \mathrm{~m} 2)$ symmetry. Such deviations have, in fact, often been observed since the first accurate crystal structure determinations of more complex compounds such as pentaphenylphosphorus (Wheatley, 1964), the N-methyltrichlorophosphinimine dimer (Hess \& Forst, 1966) and a cyclic oxyphosphorane (Spratley, Hamilton \& Ladell, 1967).

[^0]The title compound is also a cyclic oxyphosphorane, with two bidentate catechol residues and a fluorine atom at the phosphorus atom. Considerations of angular strain and ${ }^{19} \mathrm{~F}$ n.m.r. data are consistent with the fluorine atom in the equatorial plane of a trigonal bipyramid and each catechol residue bridging one equatorial and one axial position (Doak \& Schmutzler, 1970, 1971). However the fluorine atom, as the ligand with the highest electronegativity, should tend to an axial position (Ugi \& Ramirez, 1972); thus the applicability of the trigonal bipyramid model to this molecule seems questionable and the alternative of a square pyramid geometry (Hoffmann, Howell \& Muetterties, 1972) may be considered. The structure determination was undertaken in order to settle this point. In the structure presented in the following paper (Wunderlich, 1974) the fluorine atom is replaced by a methyl group. Preliminary accounts of both investigations have appeared elsewhere (Wunderlich \& Mootz, 1973; Wunderlich, Mootz, Schmuztler \& Wieber, 1973).

Table 1. Atomic parameters with estimated standard deviations, referring to the last significant figure, in parentheses
U or $U_{i j}$ multiplied by 100 . Temperature factor is defined by:
$\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+2 U_{23} k l b^{*} c^{*}+\ldots\right)\right]$ or $\exp \left[-8 \pi^{2} U(\sin \theta / \lambda)^{2}\right]$.

	x	y	z	U or U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
P	$0 \cdot 12014$ (6)	$0 \cdot 16163$ (4)	$0 \cdot 08791$ (10)	$5 \cdot 14$ (4)	$3 \cdot 76$ (3)	$3 \cdot 61$ (3)	-0.44	$0 \cdot 02$ (4)	$0 \cdot 41$ (3)
F	-0.0051 (1)	$0 \cdot 2028$ (1)	0.0779 (2)	$5 \cdot 6$ (1)	$5 \cdot 9$ (1)	$6 \cdot 5$ (1)	0.4 (1)	-0.7 (1)	$0 \cdot 2$ (1)
$\mathrm{O}(1)$	0.1534 (2)	$0 \cdot 1264$ (1)	-0.1339 (2)	$6 \cdot 5$ (1)	$4 \cdot 1$ (1)	$3 \cdot 7$ (1)	-1.0 (1)	$0 \cdot 3$ (1)	$0 \cdot 1$ (1)
$\mathrm{O}(2)$	0.0775 (2)	0.0582 (1)	$0 \cdot 1539$ (3)	$7 \cdot 2$ (1)	$4 \cdot 3$ (1)	$4 \cdot 2$ (1)	-1.6 (1)	$0 \cdot 5$ (1)	$0 \cdot 4$ (1)
$\mathrm{O}(3)$	$0 \cdot 1643$ (2)	$0 \cdot 1724$ (1)	$0 \cdot 3158$ (2)	5.9 (1)	$4 \cdot 2$ (1)	$3 \cdot 4$ (1)	-0.8 (1)	$0 \cdot 1$ (1)	$0 \cdot 5$ (1)
$\mathrm{O}(4)$	$0 \cdot 1902$ (2)	$0 \cdot 2556$ (1)	$0 \cdot 0209$ (3)	$7 \cdot 8$ (1)	$4 \cdot 0$ (1)	$3 \cdot 7$ (1)	-1.6 (1)	-0.0 (1)	$0 \cdot 3$ (1)
C(11)	$0 \cdot 0707$ (2)	-0.0001 (2)	-0.0051 (4)	$5 \cdot 0$ (2)	$4 \cdot 3$ (2)	$4 \cdot 3$ (1)	-0.2 (2)	$-0 \cdot 2$ (1)	$-0 \cdot 1$ (1)
C(12)	$0 \cdot 1153$ (2)	0.0385 (2)	-0.1722 (4)	$4 \cdot 3$ (2)	$3 \cdot 5$ (1)	$5 \cdot 2$ (1)	$0 \cdot 1$ (1)	-0.4 (1)	$0 \cdot 4$ (1)
C(13)	$0 \cdot 1198$ (3)	-0.0056 (2)	-0.3505 (4)	$5 \cdot 5$ (2)	$4 \cdot 7$ (1)	$4 \cdot 4$ (1)	$0 \cdot 3$ (2)	$0 \cdot 2$ (2)	-0.3 (1)
C(14)	0.0752 (3)	-0.0928 (2)	-0.3532 (5)	$5 \cdot 5$ (2)	$4 \cdot 9$ (2)	$6 \cdot 1$ (2)	$0 \cdot 7$ (1)	$-0 \cdot 3$ (2)	$-1.2(2)$
C(15)	0.0301 (3)	-0.1324 (2)	-0.1855 (6)	$6 \cdot 0$ (2)	$4 \cdot 1$ (2)	$7 \cdot 7$ (2)	-0.7 (2)	-0.3 (2)	-0.5 (2)
$\mathrm{C}(16)$	$0 \cdot 0266$ (3)	-0.0873 (2)	-0.0060 (5)	$6 \cdot 4$ (2)	$4 \cdot 8$ (2)	$6 \cdot 2$ (2)	$-1.5(2)$	$0 \cdot 6$ (2)	$0 \cdot 3$ (2)
H(13)	$0 \cdot 148$ (2)	0.025 (2)	-0.458 (4)	5 (1)					
H(14)	0.078 (2)	-0.124 (2)	-0.474 (4)	4 (1)					
H(15)	0.003 (3)	$-0 \cdot 188$ (2)	-0.190 (4)	7 (1)					
H(16)	-0.007 (2)	-0.106 (2)	$0 \cdot 114$ (4)	6 (1)					
C(21)	$0 \cdot 2319$ (3)	$0 \cdot 3030$ (2)	$0 \cdot 1800$ (4)	$4 \cdot 8$ (2)	$3 \cdot 9$ (1)	$3 \cdot 9$ (1)	$-0 \cdot 0$ (1)	$0 \cdot 6$ (1)	-0.0 (1)
C (22)	$0 \cdot 2186$ (2)	$0 \cdot 2551$ (2)	$0 \cdot 3519$ (4)	$4 \cdot 3$ (1)	$3 \cdot 6$ (1)	4.4 (1)	-0.0 (1)	$0 \cdot 3$ (1)	-0.1 (1)
C(23)	$0 \cdot 2574$ (3)	$0 \cdot 2860$ (2)	0.5307 (4)	$6 \cdot 2$ (2)	$5 \cdot 2$ (2)	$4 \cdot 2$ (2)	$-0 \cdot 2$ (2)	-0.2 (1)	$-0 \cdot 1$ (1)
C(24)	$0 \cdot 3115$ (3)	$0 \cdot 3714$ (2)	$0 \cdot 5309$ (5)	$6 \cdot 1$ (2)	$6 \cdot 2$ (2)	$5 \cdot 1$ (2)	-0.4 (2)	-0.5 (2)	-1.4 (2)
C(25)	$0 \cdot 3236$ (3)	0.4203 (2)	$0 \cdot 3569$ (5)	5.4 (2)	$4 \cdot 8$ (2)	$6 \cdot 4$ (2)	-1.0 (2)	$0 \cdot 8$ (2)	$-1.4(2)$
$\mathrm{C}(26)$	$0 \cdot 2847$ (3)	$0 \cdot 3877$ (2)	$0 \cdot 1786$ (5)	$5 \cdot 8(2)$	$4 \cdot 4$ (2)	$5 \cdot 1$ (2)	$-0 \cdot 6$ (1)	$1 \cdot 0$ (2)	$0 \cdot 1$ (1)
H(23)	0.253 (2)	$0 \cdot 253$ (2)	0.645 (4)	6 (1)			-6. (1)	10 (2)	$01(1)$
H(24)	$0 \cdot 342$ (2)	$0 \cdot 392$ (2)	$0 \cdot 652$ (4)	5 (1)					
H(25)	$0 \cdot 358$ (2)	$0 \cdot 476$ (2)	$0 \cdot 362$ (4)	6 (1)					
H(26)	$0 \cdot 294$ (3)	$0 \cdot 412$ (2)	$0 \cdot 057$ (5)	7 (1)					

Table 2. Observed and calculated structure factors
The columns contain index $h, 10 F_{\text {meas }}, 10 F_{\text {catc }}$ and the phases in millicycles.

 -o

 ทตm

Experimental

Crystals of $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2} \mathrm{PF}$, prepared by the method of Doak \& Schmutzler (1970, 1971), were received from R. Schmutzler, Technische Universität Braunschweig, Germany. Because of moisture sensitivity the white irregular crystals were enclosed under argon in thinwalled capillaries.

The lattice parameters were determined at room temperature by measurement of diffractometer angles of 40 reflexions with $\mathrm{Cu} K \alpha$ radiation and a subsequent least-squares refinement from the θ values. With $Z=4$ the calculated density is $d_{x}=1.569 \mathrm{~g} \mathrm{~cm}^{-3}$. Weissen-
berg and precession photographs contained systematic absences of odd orders of $h 00,0 k 0$, and possibly $00 l$, which were subsequently confirmed during data collection. Consequently the space group is $P 2_{1} 2_{1} 2_{1}$. The intensities of all 1485 independent reflexions up to $2 \theta=55^{\circ}$ were determined on a paper-tape controlled diffractometer (Siemens AED) with Zr -filtered Mo $K \alpha$ radiation and a coupled $\theta: 2 \theta$ scan for the so-called five-value measurement. There were 432 weak reflexions with $I<3 \sigma(I)$, where the standard deviation of the intensity is defined by $\sigma(I)=\left[\sigma_{\mathrm{pk}}^{2}+(0 \cdot 02 I)^{2}\right]^{1 / 2}$ with σ_{pk} $=\left(I_{\mathrm{pk}}+I_{\mathrm{bg}}\right)^{1 / 2}$ and $I=I_{\mathrm{pk}}-I_{\mathrm{bg}}$. The dimensions of the crystal were approximately $0.20 \times 0.38 \times 0.47 \mathrm{~mm}$ and

Table 3. Bond angles of the molecule
The numbering scheme (second index) for C and H atoms in the two halves of the molecule is based on the assumption of a molecular twofold symmetry axis through atoms P and F . E.s.d.'s are:

$\underset{0.1}{\angle \mathrm{O}-\mathrm{P}-\mathrm{O}}$	$\angle \underset{0 \cdot 1}{\angle \mathrm{O}-\mathrm{P}-\mathrm{F}}$	$\underset{0 \cdot 1-0 \cdot 2}{\angle \mathrm{P}-\mathrm{O}-\mathrm{C}}$	$\underset{0.2}{\angle \mathrm{O}-\mathrm{C}-\mathrm{C}}$	$\underset{0.2-0.3}{\angle \mathrm{C}-\mathrm{C}-\mathrm{C}}$	$\underset{1-2^{\circ}}{\angle \mathrm{C}-\mathrm{C}-\mathrm{H}}$
				$n=1$	$n=2$
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(2)$	91.2°		$\mathrm{C}(n 6)-\mathrm{C}(n 1)-\mathrm{C}(n 2)$	$121.4{ }^{\circ}$	121.2°
$\mathrm{O}(3)-\mathrm{P}-\mathrm{O}(4)$	91.7		$\mathrm{C}(n 1)-\mathrm{C}(n 2)-\mathrm{C}(n 3)$	123.0	123.0
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(3)$	$146 \cdot 1$		$\mathrm{C}(n 2)-\mathrm{C}(n 3)-\mathrm{C}(n 4)$	$116 \cdot 1$	116.2
$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(4)$	168.2		$\mathrm{C}(n 3)-\mathrm{C}(n 4)-\mathrm{C}(n 5)$	121.4	$120 \cdot 7$
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(4)$	84.5		$\mathrm{C}(n 4)-\mathrm{C}(n 5)-\mathrm{C}(n 6)$	122.0	122.0
$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(3)$	85.7		$\mathrm{C}(n 5)-\mathrm{C}(n 6)-\mathrm{C}(n 1)$	116.2	116.8
$\mathrm{O}(1)-\mathrm{P}-\mathrm{F}$	$107 \cdot 3$				
$\mathrm{O}(2)-\mathrm{P}-\mathrm{F}$	96.0		$\mathrm{C}(n 2)-\mathrm{C}(n 3)-\mathrm{H}(n 3)$	118	123
$\mathrm{O}(3)-\mathrm{P}-\mathrm{F}$	$106 \cdot 6$		$\mathrm{C}(n 4)-\mathrm{C}(n 3)-\mathrm{H}(n 3)$	125	120
$\mathrm{O}(4)-\mathrm{P}-\mathrm{F}$	$95 \cdot 8$		$\mathrm{C}(n 3)-\mathrm{C}(n 4)-\mathrm{H}(n 4)$	117	117
			$\mathrm{C}(n 5)-\mathrm{C}(n 4)-\mathrm{H}(n 4)$	122	122
$\mathrm{P}-\mathrm{O}(1)-\mathrm{C}(12)$) 113.3		$\mathrm{C}(n 4)-\mathrm{C}(n 5)-\mathrm{H}(n 5)$	120	119
$\mathrm{P}-\mathrm{O}(2)-\mathrm{C}(11)$) 112.3		$\mathrm{C}(n 6)-\mathrm{C}(n 5)-\mathrm{H}(n 5)$	118	119
$\mathrm{P}-\mathrm{O}(3)-\mathrm{C}(22)$) 112.9		$\mathrm{C}(n 5)-\mathrm{C}(n 6)-\mathrm{H}(n 6)$	115	115
$\mathrm{P}-\mathrm{CO}(4)-\mathrm{C}(21)$) 112.2		$\mathrm{C}(n 1)-\mathrm{C}(n 6)-\mathrm{H}(n 6)$	129	128
$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{C}(11)$) $110 \cdot 5$				
$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{C}(13)$	126.5				
$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{C}(12)$) 111.5				
$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{C}(16)$) $127 \cdot 2$				
$\mathrm{O}(3)-\mathrm{C}(22)-\mathrm{C}(21)$) $110 \cdot 7$				
$\mathrm{O}(3)-\mathrm{C}(22)-\mathrm{C}(23)$) $126 \cdot 3$				
$\mathrm{O}(4)-\mathrm{C}(21)-\mathrm{C}(22)$) 111.5				
$\mathrm{O}(4)-\mathrm{C}(21)-\mathrm{C}(26)$) $127 \cdot 3$				

Fig. 1. The molecule of $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PF}$ in arbitrary orientation to the crystallographic axes. Heavy atoms are represented by thermal ellipsoids of 50% probability and an isotropic temperature factor of $B=1.0 \AA^{2}$ was given toall hydrogen atoms. Bond lengths are given in \AA. E.s.d.'s are: P-F,O 0.002, C-O 0.003, C-C 0.005 and C-H $0.03 \AA$.
c was parallel to the φ axis of the instrument. In view of the low linear absorption coefficient, $\mu_{\mathrm{MoK} \alpha}=2.7$ cm^{-1}, no absorption corrections were applied.

Structure determination and refinement

The coordinates of the phosphorus atom were derived from a sharpened Patterson map and the structure was completed by structure-factor calculations and Fourier syntheses. All hydrogen atoms were located in a difference map. The final full-matrix least-squares refinement, with anisotropic temperature factors for the heavy atoms and isotropic temperature factors for the hydrogen atoms (195 parameters), converged at $R=$ $\sum\left|\Delta F_{\text {meas }}\right| / \sum\left|F_{\text {meas }}\right|=0.041$ and $R_{w}=\left[\sum w\left(\Delta F_{\text {meas }}\right)^{2} /\right.$ $\sum w F_{\text {meas }}^{2}{ }^{1 / 2}=0.030$ for all reflexions. The function minimized was $\sum w(\Delta F)^{2}$ with weights derived from $\sigma(I)$ through $w=1 / \sigma^{2}(F)$. Atomic scattering factors for P, F, O, and C were taken from Cromer \& Mann (1968), and those for H from Stewart, Davidson \& Simpson (1965). The X-RAY (1972) system was used for all calculations. The final atomic coordinates and thermal parameters are given in Table 1; observed and calculated structure factors are listed in Table 2.

Results and discussion

Fig. 1 shows the molecule with thermal ellipsoids of the non-hydrogen atoms and all bond lengths; bond angles are given in Table 3. As speculated in the introduction the molecular structure is intermediate between trigonal bipyramidal and square pyramidal. A similar result was reported recently for the corresponding tetrathio compound $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}\right)_{2} \mathrm{PF}$ (Eisenhut, Schmutzler \& Sheldrick, 1973). The two axial oxygen atoms are moved away from the fluorine atom so as to reduce the $\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(4)$ angle from 180° of an ideal bipyramid to $168 \cdot 2^{\circ}$. Furthermore the difference between the longer axial P-O bond lengths, 1.659 and $1.658 \AA$, and the shorter equatorial ones, 1.629 and $1.625 \AA$, is less than usual for trigonal bipyramidal bonding (see for example the structural studies cited in the Introduction). However this difference is still significant (16σ) and is paralleled by an opposite,
though smaller, difference between the adjacent $\mathrm{C}-\mathrm{O}$ bonds in the five-membered rings. The distortion from trigonality caused by the unequal substitution and the chelation is shown by the differences of the equatorial angles ($106 \cdot 6,107 \cdot 3$ and $146 \cdot 1^{\circ}$). Bond lengths and bond angles in the two phosphole ring systems are discussed in the following article (Wunderlich, 1974).

Table 4, containing the distances of the atoms from various least-squares planes, shows the amount of distortion from idealized geometry in a different way. In a trigonal bipyramid the appropriate atoms forming the first four planes of Table $4(\mathrm{i})$ must be coplanar, whereas in an idealized square pyramid the appropriate atoms defining planes 1,4 and 5 must be coplanar. Thus only atomic distances from planes 2,3 and 5 are sensitive to a change from trigonal bipyramidal to square pyramidal geometry. The distances from plane

Table 4. Atomic distances (\AA) from several least-squares planes

Only distances of atoms defining the planes are listed.
(i) Central part of the molecule

Central part of the molecule					
Plane					
	1	2	3	4	5
P	-0.003	-0.107	-0.112	0.007	
F	0.001			-0.001	
$\mathrm{O}(1)$	0.001	-0.004		0.153	
$\mathrm{O}(2)$		0.055	0.057	-0.003	-0.152
$\mathrm{O}(3)$	0.001		-0.002		0.151
$\mathrm{O}(4)$		0.056	0.057	-0.003	-0.153

(ii) Five-membered rings

	$n=1$	$n=2$
P	-0.061	-0.059
$\mathrm{O}(1)$	0.056	
$\mathrm{O}(2)$	0.060	
$\mathrm{O}(3)$		0.053
$\mathrm{O}(4)$		0.058
$\mathrm{C}(n 1)$	-0.031	-0.032
$\mathrm{C}(n 2)$	-0.024	-0.021

(iii) Benzene rings

	$n=1$	$n=2$
	$n=1$	
$\mathrm{C}(n 1)$	-0.001	0.005
$\mathrm{C}(n 2)$	-0.002	-0.005
$\mathrm{C}(n 3)$	0.003	0.001
$\mathrm{C}(n 4)$	-0.002	0.003
$\mathrm{C}(n 5)$	0.000	-0.003
$\mathrm{C}(n 6)$	0.002	-0.001

Fig. 2. Stereo view of the molecular packing of $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)$ PF parallel to c on $\frac{1}{2}, \frac{1}{2}, 0$ [program ORTEP by Johnson (1965)]. Upper left molecule represents the asymmetric unit, as listed in Table 1.

2 and 3 are smaller than those from plane 5, indicating a somewhat more trigonal bipyramidal character of the intermediate molecular geometry.
The benzene rings are both flat within $\pm 0.005 \AA$, while the five-membered rings are puckered up to $\pm 0.06 \AA$. The angles between the planes of the two rings are 3.9 and 2.4° in both halves of the molecule. There is a non-crystallographic twofold axis defined by the phosphorus and fluorine atoms. A rotation through this axis of one half of the molecule leads to an r.m.s. distance of $0.052 \AA$ for the corresponding atoms. The packing of the molecules, for which there are no intermolecular distances less than the sum of the van der Waals radii of the respective atoms, is shown in Fig. 2.

We thank Professor R. Schmutzler for encouraging this investigation and for the sample crystals. This work was supported by the Deutsche Forschungsgemeinschaft, which also provided the diffractometer.
A Telefunken TR4 computer at the Computer Center of the University of Stuttgart was used for generation and reduction of diffractometer input and output and a UNIVAC 1108 was used for all calculations with the X-RAY 72 system. Plots and calculations of the program ORTEP (Johnson, 1965) were performed on a Telefunken TR440 of the Gesellschaft für Mathematik und Datenverarbeitung m.b.H. at Darmstadt.

References

Cromer, D. \& Mann, J. (1968). Acta Cryst. A24, 321-324.
Doak, G. O. \& Schmutzler, R. (1970). Chem. Commun. pp. 476-477.
Doak, G. O. \& Schmutzler, R. (1971). J. Chem. Soc. (A), pp. 1295-1299.
Eisenhut, M., Schmutzler, R. \& Sheldrick, W. S. (1973). Chem. Commun. pp. 144-145.
Hansen, K. W. \& Bartell, L. S. (1965). Inorg. Chem. 4, 1775-1776.
Hess, H. \& Forst, D. (1966). Z. anorg. allgem. Chem. 342, 240-252.
Hoffmann, R., Howell, J. M. \& Muetterties, E. L. (1972). J. Amer. Chem. Soc. 94, 3047-3058.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Spratley, R. D., Hamilton, W. C. \& Ladell, J. (1967). J. Amer. Chem. Soc. 89, 2272-2278.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Ugi, I. \& Ramirez, F. (1972). Chem. Brit. 8, 198-210.
Wheatley, P. J. (1964). J. Chem. Soc. pp. 2206-2222.
Wunderlich, H. (1974). Acta Cryst. B30, 939-945.
Wunderlich, H. \& Mootz, D. (1973). First European Crystallographic Meeting, Bordeaux, Group C6.
Wunderlich, H., Mootz, D., Schmutzler, R. \& Wieber, M. (1974). Z. Naturforsch. In the press.

X-RAY (1972). Technical Report TR-192 of the Computer Science Center, Univ. of Maryland, June 1972.

Crystal Structures of Pentacoordinate Phosphorus Compounds. III. 2-Methyl-2,2'-spirobis-(1,3,2-benzodioxaphosphole), $\left(\mathrm{C}_{6} \mathbf{H}_{4} \mathrm{O}_{2}\right)_{2} \mathrm{PCH}_{3}$

By Hartmut Wunderlich*
Max-Planck-Institut für Festkörperforschung, 7 Stuttgart 1, Postfach 1099, Germany (BRD)

(Received 19 November 1973; accepted 21 November 1973)

Abstract

The title compound is monoclinic, space group $P 2_{1} / c$, with $a=14.842$ (10), $b=12.092$ (9), $c=13.711$ (8) $\AA, \beta=98.52(9)^{\circ} ; Z=8$. The intensities were measured with a four-circle diffractometer. The structure was solved by direct methods and refined by block-diagonal least-squares calculations to $R=0.05$. The geometry of the pentacoordinate phosphorus group can be described as a rectangular pyramid. The characteristic features of molecule (I) are: the diagonal angles O-P-O are $148 \cdot 1$ and 156.9°, the four bond angles between the apical methyl group and the $\mathrm{P}-\mathrm{O}$ bonds are similar (105•6, 102.1, 106.1 and $101 \cdot 1^{\circ}$), and the differences of the P-O bond lengths ($1.654,1 \cdot 649$ versus $1 \cdot 674,1 \cdot 672 \AA$) may be regarded as a small residual character of a bipyramid. The corresponding values of molecule II are: diagonal angles O-P-O $147 \cdot 7$ and $156 \cdot 2^{\circ}$, the four C-P-O angles are similar ($106 \cdot 4,102 \cdot 3,105 \cdot 9$ and $101 \cdot 4^{\circ}$); however the four $\mathrm{P}-\mathrm{O}$ bonds cannot be classified as pairs of short and long bonds $(1 \cdot 650$, 1.658 versus 1.661 and $1.674 \AA$). In both molecules the four oxygen atoms show distances from a corresponding least-squares plane of less than $0.06 \AA$.

This investigation continues the studies of the stereochemistry of pentacoordinate phosphorus atoms. In contrast to part II of the series (Wunderlich \& Mootz, 1974) the title compound contains a phosphorus atom

[^1]surrounded by four electronegative oxygen atoms and one less electronegative carbon atom. A priori this should yield the geometry of a tetragonal pyramid (Hoffmann, Howell \& Muetterties, 1972); however the chelation should reduce the symmetry to that of a rectangular pyramid (Kepert, 1973). Except for the transition stage during the pseudorotation by the Berry mechanism (Berry, 1960; Gillespie et al., 1971)

[^0]: * Part I: Wunderlich, Mootz, Schmutzler \& Wieber (1974).
 \dagger Present address: Lehrstuhl für Strukturchemie und anorganische Chemie, Universität Düsseldorf, 4 Düsseldorf, Germany.

[^1]: * Present address: Lehrstuhl für Strukturchemie und anorganische Chemie, Universität Düsseldorf, 4 Düsseldorf, Germany.

